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Abstract
We argue that the well known Dynes formula (Dynes et al 1978 Phys. Rev. Lett. 41 1509) for
the superconducting quasiparticle density of states, which tries to incorporate the lifetime
broadening in an approximate way, cannot be justified microscopically for conventional
superconductors. Instead, we propose a new simple formula in which the energy gap has a finite
imaginary part −�2 and the quasiparticle energy is real. We prove that in the quasiparticle
approximation 2�2 gives the quasiparticle decay rate at the gap edge for conventional
superconductors. This conclusion does not depend on the nature of interactions that cause the
quasiparticle decay. The new formula is tested on the case of a strong coupling superconductor
Pb0.9Bi0.1 and an excellent agreement with theoretical predictions is obtained. While both the
Dynes formula and the one proposed in this work give good fits and fit parameters for
Pb0.9Bi0.1, only the latter formula can be justified microscopically.

Almost thirty years ago Dynes et al [1] proposed that
the quasiparticle recombination time in a strong-coupled
superconductor can be directly measured from the width
of the peak in the tunneling conductance dI (V )/dV of a
superconductor–insulator–superconductor tunnel junction at
the sum of the gaps. They found that the data on Pb0.9Bi0.1–
insulator–Pb0.9Bi0.1 planar tunnel junction could be fitted quite
well for voltages near twice the gap if the quasiparticle density
of states

ρ(E) = Re
E

√
E2 − �2(E)

, (1)

in the expression for the tunneling current

I (V ) ∝
∫ +∞

−∞
dEρ(E)ρ(E + eV )[ f (E) − f (E + eV )] (2)

is replaced by

ρD(E, �D) = Re
E − i�D√

(E − i�D)2 − �2
0

, (3)

with real and E-independent �D and the measured gap edge
�0. In (1) �(E) is the complex gap function and f and e in (2)
are the Fermi function at temperature T and the magnitude

of electron charge, respectively. It was proposed [1] that the
temperature dependent parameter �D in (3) incorporates the
quasiparticle lifetime effects. A good agreement between the
measured �D(T ) and a microscopic calculation [1] based on
the work by Kaplan et al [2] for a number of temperatures
below the transition temperature Tc of Pb0.9Bi0.1 was taken as
a justification for the replacement of ρ(E) with ρD(E, �D)

and for the interpretation of parameter 2�D as the inverse
of the quasiparticle recombination lifetime. Formula (3) is
now widely known as the Dynes formula and it has been
applied to a variety of low temperature (T � Tc) tunneling
experiments ranging from tunneling into the bulk [3] and
thin film [4] inhomogeneous/granular superconductors to the
tunneling into a two-band superconductor MgB2 [5] and
tunneling into a novel superconductor CaC6 [6, 7]. The Dynes
formula was also recently used to describe the density of
states obtained in photoemission studies of superconducting
h-ZrRuP [8] and of filled skutterudite superconductor
LaRu4P12 [9].

However, the ansatz (3) cannot be justified for
a conventional strong coupling superconductor, such as
Pb0.9Bi0.1 [1], from first principles. Indeed, ρ(E) is given
in terms of the diagonal electron Green’s function in the
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superconducting state

G11(k, E) = E Z(k, E) + εk

E2 Z 2(k, E) − φ2(k, E) − ε2
k

, (4)

where Z is the complex renormalization function and φ is the
complex pairing self-energy [10, 11], as

ρ(E) = − 1

π N(0)
Im

∑

k

G11(k, E), (5)

where N(0) is the normal state density of states at the Fermi
level. All interactions enter via the self-energy terms Z and
φ and assuming that they do not depend on momentum k one
finds

ρ(E) = Re
E Z(E)

√
E2 Z 2(E) − φ2(E)

(6)

= Re
E

√
E2 − �2(E)

, (7)

where in the last step Z(E) and φ(E) have been eliminated
in favor of the gap function �(E) = φ(E)/Z(E). Clearly,
all the lifetime effects which enter via φ(E) and Z(E) are
ultimately incorporated in the complex gap function �(E)

and the tunneling current I (V ) depends on the full complex
gap function as is clear from equations (1) and (2). Note
that (6) cannot be cast into the form (3) by a suitable choice
of Z(E) (e.g. taking Z(E) = 1− i�D/E would give Re [(E −
i�D)/

√
(E − i�D)2 − φ(E)], where the pairing self-energy φ

appears instead of the gap �, and the measured dI/dV gives
� and not φ).

Instead of replacing ρ(E) with ρD(E, �D) it is more
reasonable to keep �(E) in (1) constant but complex for E
not too far from the gap edge �0, i.e. replace (1) with

ρ�(E,�2) = Re
E

√
E2 − (�0 − i�2)2

, (8)

where −�2 is the imaginary part of the gap at E = �0. It
is well known that at a finite temperature the imaginary part
of the gap at the gap edge is finite as a result of quasiparticle
damping (see figure 45 in [11]). In fact, it is easy to prove that
in the quasiparticle approximation [2] the quasiparticle decay
rate at the gap edge is equal to −2 Im �(E = �0). Assuming
that at E = �0 the imaginary parts Z2 and φ2 of Z and
φ, respectively, are much smaller than the corresponding real
parts one finds that

− Im �(E = �0) ≈ �0 Z2(E = �0) − φ2(E = �0)

Z1(0)
, (9)

where Z1(0) is the real part of Z(E = 0). Expression (9) is
identical to the equation of Kaplan et al for the quasiparticle
decay rate parameter �(E = �0) [2] (see equation (5) in [2]).
This result is quite general and does not depend on the specific
interactions leading to quasiparticle damping, i.e. whether
it is the electron–phonon interaction which was considered
in [1, 2], or the dynamically screened Coulomb interaction in
the presence of disorder which was assumed to be the cause of
lifetime broadening in low temperature tunneling experiments

Figure 1. The calculated dI/dV (solid line) and the experimental
data points (filled circles) from [1] at T = 3.5 K. The data are plotted
as a function of eV − 2�0.

into three-dimensional granular aluminum [3] and quench-
condensed two-dimensional films of Pb and Sn [4]. All that
is required for

2�(k, E = �0) = −2 Im �(k, E = �0), (10)

to be valid, where 2�(k, E = �0) is the inverse quasiparticle
lifetime with k on the Fermi surface, is that the imaginary parts
of φ(k, E) and Z(k, E) are much smaller than their respective
real parts near the gap-edge. Needless to say, (10) does
not apply to unconventional superconductors characterized by∑

k∈FS �(k) = 0, where FS is the Fermi surface, for k near the
gap nodes [12].

In the case of Pb0.9Bi0.1 we find that equation (8) produces
fits to dI (V )/dV which are at least as good as those obtained
with the Dynes formula (3). Instead of trying to fit the
original data from [1], which in addition to the temperature
dependent lifetime broadening were assumed to contain an
intrinsic (background) width of 0.01 meV, we fitted dI (V )/dV
calculated from the solutions �(E) and Z(E) of the finite
temperature Eliashberg equations [10, 11] on the real axis
using the Eliashberg function α2(	)F(	) for Pb0.9Bi0.1 [13].
Thus, the width of the peak in our calculated dI (V )/dV arises
solely from the temperature dependent lifetime broadening and
we could compare directly the value of the fit parameter �2

in equation (8) with our solution − Im �(E) for E at the gap
edge. Moreover, we could calculate the decay rate parameter
�(E) directly from our solutions of Eliashberg equations [2]
(see equation (4) in [2])

�(E) = E Z2(E)/Z1(E) − φ1(E)φ2(E)/[Z 2
1(E)E] (11)

and compare its value at E = �0 with �2 obtained from the
fits with equation (8). We note, however, that there is a good
agreement between the shapes of the calculated dI (V )/dV and
the measured ones [1] down to T = 2.75 K as illustrated in
figure 1 for T = 3.5 K. In figure 1 the results are plotted as
functions of eV − 2�0 since with our choice of the Coulomb
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Figure 2. The calculated (filled circles) dI/dV at six different
temperatures as a function of voltage and their fits with (8) (solid
line) and with the Dynes formula (3) (dashed line) with �2 and �D as
the only fit parameters, respectively.

pseudopotential μ∗(ωc) = 0.1034, which was fitted to the
experimental zero temperature gap edge �0 = 1.54 meV [13]
for the cutoff ωc = 100 meV in the Eliashberg equations,
we obtain somewhat higher values of �0 than those found
in [1]. As the Coulomb pseudopotential term in the Eliashberg
equations is purely real it does not affect the imaginary parts of
the solutions [10, 11].

In figure 2 we show the fits to the calculated dI/dV
using the Dynes formula (3) and the formula with the complex
gap (8). On the scale of figure 2, which was chosen to match
the scale of figure 2 in [1], both equations (3) and (8) give
equally good fits. Moreover, the values of the fit parameter �2

turn out to be nearly the same as the values of the fit parameter
�D at all temperatures considered. One can understand
why two different functional forms (3) and (8) give nearly
identical fits to dI/dV with nearly identical fit parameters
�D ≈ �2 from the fact that in the limit �D,�2 � �0 the

Figure 3. The calculated dI/dV (dots) at T = 6 K versus voltage
and the fits with (8) (solid line) and (3) (dashed line), with �2 and �D

as the only fit parameters, respectively.

approximations (3) and (8) to ρ(�0) give
√

�0/�D/2 and√
�0/�2/2, respectively and the height of the peak in dI/dV

is most sensitive to the maximum in the quasiparticle density
of states. However, it is clear that as the lifetime broadening
grows compared to the gap edge, the difference between the
fit parameters obtained with (3) and with (8) increases and the
quality of fits with the Dynes formula deteriorates compared
to the fits with (8) as illustrated in figure 3, in particular
at lower voltages. The reason is that for �D,�2 � �0

in the limit of small energy ρD(E, �D) = �D/�0, while
ρ�(E,�2) = (�2/�

2
0)E to the first order in E , i.e. ρD(E, �D)

does not vanish at E = 0. We note that the experimental low-
temperature densities of states obtained for three-dimensional
granular aluminum [3] do vanish at E = 0 (see figure 3
in [3]), while those obtained for two-dimensional quench-
condensed tin films [4] do not (see figure 2 in [4]). The precise
reason for such a difference between three-dimensional and
two-dimensional disordered conventional superconductors is
not known at the present time.

As one could have expected, the fitted values of �2 turned
out to be equal to the imaginary parts of our solutions �(E) of
the Eliashberg equations at E = �0 to within a few percent
at all temperatures considered. The values of �2 extracted
from the fits to the calculated dI/dV agree with the values
of the fit parameter �(≡�D) reported in [1] before correction
for the background to within a percent or two down to T =
4.2 K. At T = 3.5 K the difference is about 30% and yet
the shapes of the calculated and measured dI/dV in figure 1
seem to agree quite well. A further reduction of the measured
� by the background value of 0.01 meV would increase the
difference between the lifetime broadening parameters to about
150%. At T = 2.75 K our fitted value (the fit is not shown
here) is �2 = 0.002 26 meV which is 80% lower than the
measured � [1] or more than twice the measured value after the
correction for the background. It is quite plausible that at low
temperatures, when both the experimental and the theoretical
data in the peak change very rapidly, it is difficult to determine
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Figure 4. Quasiparticle lifetime at the gap edge determined in
various ways (see the text) as a function of inverse temperature.

the actual maximum in dI/dV to which the fit parameters are
most sensitive. It is likely that the maximum in dI/dV gets
underestimated at low T having as a consequence too high
values of the lifetime broadening parameter. We believe that
is the reason for the discrepancies between our fitted values of
�2 and those found in [1] at low temperatures and that there
is no need to invoke the intrinsic temperature-independent
broadening parameter.

Finally, in figure 4 we show the temperature dependence
of the quasiparticle lifetime τ at the gap edge obtained from
h̄/τ = 2�2 (open squares) and h̄/τ = 2(� − 0.01 meV)

(filled circles) with the values of � taken from figure 2 in [1].
In the same figure we show theoretical predictions for the
recombination time τr (solid line) and the total lifetime τ

(dashed line) at the gap edge based on approximate equations
of Kaplan et al [2]

h̄

τr
= C

∫ ∞

2�0

d	 α2(	)F(	)
	 − �0√

(	 − �0)2 − �2
0

× 	

	 − �0
[n(	) + 1] f (	 − �0), (12)

h̄

τs
= C

∫ ∞

0
d	 α2(	)F(	)

	 + �0√
(	 + �0)2 − �2

0

× 	

	 + �0
n(	)[1 − f (	 + �0)], (13)

where n(	) is the Bose function, C = 2π/{Z1(0)[1− f (�0)]}
and h̄/τ = h̄/τr + h̄/τs. A good agreement between the
measured h̄/2(� − 0.01 meV) and τr calculated according
to (12) was taken as a justification of the Dynes formula (3)
in [1]. We note that the integrand in (12) has a square root
singularity at the lower limit of integration which has to be
handled analytically if τr is not to be overestimated. Comparing
figure 3 in [1] and figure 4 in this work it is clear that our

calculated τr is considerably lower at the low temperatures
than the one calculated in [1] as the filled circles in both
figures represent h̄/2(� − 0.01 meV). In addition, we show
in figure 4 the lifetime calculated directly from our solutions
of the Eliashberg equations in the quasiparticle approximation
h̄/τ = 2�(�0) (plus signs), where �(�0) is computed using
equation (11). The agreement between the values for the total
quasiparticle lifetime τ at the gap edge obtained from the fits
with formula (8) and both theoretical predictions is excellent.

In conclusion, we have shown that one can, indeed, obtain
the total quasiparticle lifetime at the gap edge from the fits of
the derivatives of the I –V characteristic of a superconductor–
insulator–superconductor tunnel junctions using equation (8).
The interpretation of the parameter 2�2 as the quasiparticle
decay rate at the gap edge is microscopically justified. While
the Dynes formula (3) gives correct values for the total
quasiparticle lifetime, it cannot be justified for conventional
superconductors. Hence the fact that it works, at least for
the cases when the quasiparticle decay rate is less than about
20% of the gap edge, is a pure accident. It is likely that
for larger values of 2�/�0, which seems to be the case in
LaRu4P12 (2�/�0 ≈ 50%) [9], equations (3) and (8) would
give qualitatively and quantitatively different results.
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